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Abstract: - In 2008, the firefly algorithm (FA) was firstly proposed as one of the most powerful population-
based metaheuristic optimization techniques for solving continuous and combinatorial optimization problems. 
However, many real-world engineering problems are typically formulated as the multiobjective optimization 
problems with complex constraints. In this paper, the Lévy-flight firefly algorithm (LFA) is applied to 
simultaneously minimize two particular objective functions, i.e. rise time and maximum overshoot, in order to 
obtain the optimal PIDA controllers for the automatic voltage regulator (AVR) system. As results, it was found 
that the LFA can provide the optimal PIDA controllers according to the predefined objective and constraint 
functions. Moreover, the LFA can perform the optimal Pareto front containing the optimal PIDA controllers for 
the AVR system. 
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1 Introduction 
Metaheuristic optimization techniques have become 
acceptable worldwide as one of the most efficient 
intelligent tools applied to various complex and NP-
hard real-world problems [1-4]. Many metaheuristic 
algorithms have been consecutively developed and 
launched. They can be classified into two main 
categories, i.e. trajectory-based and population-
based metaheuristic algorithms. The former has 
strong intensification (or exploitation) property, 
while the later has strong diversification (or 
exploration) characteristics. [1-4]. Among those, the 
firefly algorithm (FA) is one of the most efficient 
population-based metaheuristic algorithms. The FA 
was originated by Yang in 2008 [4],[5] based on the 
flashing behavior of fireflies. Since its first 
appearance in 2008, in the last few years, the FA has 
been applied to almost every area of sciences and 
engineering, including power systems [6], image 
processing [7], antenna design [8], civil engineering 
[9], robotics [10], semantic web [11], chemistry 
[12], meteorology [13], wireless sensor networks 
[14], control engineering [15] and so forth.  

The first version of the FA initiated by Yang in 
2008 [4],[5] used the normal distribution, whereas 
the last version of the FA modified by Yang in 2010 
employed the Lévy-flight distribution to randomly 
generate new solutions [16]. It is named the Lévy-
flight firefly algorithm (LFA). From the preliminary 
study of Yang [16], the LFA was tested against 

several nonlinear and multimodal standard test 
functions. Results obtained by the LFA 
outperformed those by traditional algorithms 
including genetic algorithms (GA) and particle 
swarm optimization (PSO). The state-of-the-art and 
its applications of the LFA have been reviewed and 
reported [17],[18]. 

For our previous work, the FA was applied to 
design an optimal PIDA controller for the automatic 
voltage regulator (AVR) system via single-objective 
function [19]. In this paper, the LFA is then 
conducted to design an optimal PIDA controller for 
the AVR system based on muitiobjective 
optimization. The rise time and the maximum 
overshoot of the time-domain responses, which 
conflict to each other, are set as two particular 
objective functions to be minimized. Set of the 
optimal PIDA controllers will be obtained by the 
LFA to formulate the Pareto front and perform 
trade-off characteristics according to muitiobjective 
optimization context. This paper consists of five 
sections. After an introduction is proposed in section 
1, the rest of the paper is arranged as follows. The 
LFA algorithms are briefly described in section 2. 
Problem formulation consisting of a concept of 
muitiobjective optimization with Pareto optimality 
and LFA-based PIDA design framework for the 
AVR system is provided in section 3. Results and 
discussions are given in section 4. Conclusions are 
followed in section 5.   
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2 Lévy-Flight Firefly Algorithm 
Proposed by Yang in 2008, the FA was formulated 
based on the flashing behavior of fireflies [4],[5]. 
The flashing light of fireflies is produced by a 
process of bioluminescence to attract mating 
partners for communication and to attract potential 
prey. The FA’s algorithm is developed from three 
idealized rules:  

1) Fireflies are unisex so that one firefly will be 
attracted to other fireflies regardless of their sex;  

2) The attractiveness is proportional to the 
brightness, and they both decrease as their distance 
increases. Thus for any two flashing fireflies, the 
less brighter one will move towards the brighter 
one. If there is no brighter one than a particular 
firefly, it will move randomly; and  

3) The brightness of a firefly is determined by 
the landscape of the objective function.  

In FA, there are two important issues: the 
variation of light intensity and formulation of the 
attractiveness. The attractiveness of a firefly is 
determined by its brightness which in turn is 
associated with the encoded objective function. 
Along the distance r, the light intensity I varies 
according to the inverse square law I(r) = Is/r

2, 
where Is is the intensity at the source. For a given 
medium with a fixed light absorption coefficient, the 
light intensity I varies with the distance r as stated in 
(1), where I0 is the original light intensity. 

 

                                             
reII  0  (1) 

 

                                          
2

0
re    (2) 

                                           

          




d

k
kjkijiijr

1

2
,, )( xxxx  (3) 

 
The attractiveness of a firefly observed by 

adjacent fireflies is proportional to the light 
intensity. This can define the variation of 
attractiveness  with the distance r as expressed in 
(2), where 0 is the attractiveness at r = 0. From 
parametric studies, 0 = 1 is suggested for most 
applications [4],[5]. The scaling factor  in (1) and 
(2) is defined as the light absorption coefficient. In 
addition in (1) and (2), the distance rij between any 
two fireflies i and j at their locations xi and xj can be 
calculated by the Cartesian distance as expressed in 
(3), where xi,k is the kth component of the spatial 
coordinate xi of ith firefly. 

 

For an original FA, the movement of a firefly i is 
attracted to another more attractive (brighter) firefly 
j is determined by (4), where t is the randomization 
parameter, and i is a vector of random numbers 
drawn from a Gaussian distribution or uniform 
distribution at time t [5]. In addition, t can be 
controlled during iterations as stated in (5), where0 

is the initial randomness scaling factor, and  is a 
cooling factor.  
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For the Lévy-flight firefly algorithm (LFA) 
proposed by Yang in 2010 [16], the movement of a 
firefly i is attracted to another more attractive 
(brighter) firefly j is determined by (6), where the 
second term is due to the attraction while the third 
term is randomization via Lévy flights with  being 
the randomization parameter. The product  means 
entrywise multiplications. The sign[rand-1/2] 
where rand  [0, 1] essentially provides a random 
sign or direction while the random step length is 
drawn from a Lévy distribution having an infinite 
variance with an infinite mean. From (6), a symbol 
Lévy() represents the Lévy distribution as 
expressed in (7). The step length s can be calculated 
by (8), where u and v stand for normal distribution 
as stated in (9). Standard deviations of u and v are 
also expressed in (10). The LFA algorithms can be 
represented by the flow diagram as shown in Fig. 1. 
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- Perform objective function f(x), x = (x1,…,xd)
T

- Initial search spaces 
- Randomly initial population of fireflies xi (i = 1, 2,…, n)
- Light intensity Ii at xi is determined by f(xi)
- Define light absorption coefficient
- Initialize Max_Gen, Gen = i = j =1
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<=

Max_Gen
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- Attractiveness varies with distance r via (2) 
- Create new solutions x* via (6)
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- Update: x = x*

No

Stop
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solution
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No
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- Move firefly i towards j via Lévy flights via (7)-(10)

Ij > Ii

- Set j = 1
- Update i = i++

- Update j = j++
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f(x*)< f(x)

- Set i = j =1
- Gen = Gen++

 

Fig. 1 Flow diagram of LFA algorithms. 
 
 

3 Problem Formulation 
In this section, the problem formulation is 
presented. It is divided into two parts, that is, a 
concept of muitiobjective optimization and the 
LFA-based PIDA design framework for the AVR 
system. 
 
 
3.1 Multiobjective Optimization 
Based on optimization context [1],[2],[20], 
multiobjective optimization problems can be 
formulated as expressed in (11), where f(x) is the 
multiobjective function consisting of f1(x),…, fn(x), 
n  2, gj(x), j = 1, 2,…,m, is the inequality 
constraints and hk(x), k = 1, 2,…,p, is the equality 
constraints. The optimal solutions, x*, are ones can 

make f(x) minimum and make both gj(x) and hk(x) 
satisfied. Regarded to the Pareto optimality [21-23], 
a solution vector, u = (u1,…,un)

T  S, is said to 
dominate another solution vector v = (v1,…,vn)

T, 
denoted by u  v, if and only if ui  vi for i  
{1,…,n} and for i  {1,…,n}: ui  vi. This implies 
that no component of v is smaller than the 
corresponding component of u, and at least one 
component of u is strictly smaller stated in (12).      
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A solution x*  S is called a non-dominated 
solution if no solution can be found that dominates 
it. In other words, a solution x*  S is Pareto 
optimal if for every x  S, f(x)  F does not 
dominate f(x*)  F, that is f(x*)   f(x). For a given 
multiobjective optimization problem, the Pareto 
optimal set is defined as P* stated in (13). The 
Pareto front PF* of a given multiobjective 
optimization problem can be defined as the image of 
the Pareto optimal set P* expressed in (14). 
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3.2 LFA-Based PIDA Design Framework 
The LFA-based PIDA controller design framework 
for the AVR system is represented in Fig. 2. The 
AVR is commonly used in the generator excitation 
system of hydro and thermal power plants. The 
main role of the AVR is to regulate generator 
voltage and control the reactive power flow at a 
specified level. In this work, a simple AVR consists 
of four main components, i.e. amplifier, exciter, 
generator, and sensor, respectively as shown in Fig. 
2, where E is the error voltage between the referent 
input voltage Vref(s) and sensor voltage VB, while U , 
VR and VF are the controlled, amplified, and excited 
voltage signals, and Vo(s) is the output voltage. Four 
main components of the AVR are linearized and 
modeled by transfer functions [24],[25] as 
visualized in Fig. 2. From [24],[25], the amplifier 
gain model KA is in the range of 10 to 400, while the 
amplifier time constant A is very small ranging 
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from 0.02 to 0.1 sec. For an exciter, a gain KE is in 
the range of 1 to 400 and a time constant E is from 
0.25 to 1.0 sec. For a generator, a gain KG may vary 
from 0.7 to 1.0, while a time constant G is varied 
from 1.0 to 2.0 sec. Finally, a sensor gain KR is very 
small ranging from 0.1 to 1.0, and its time constant 
R is varied from 0.001 to 0.06 sec. Models of four 
main components will be used as a system plant in 
the control loop. 

Referring to the control loop in Fig. 2, the PIDA 
controller receives the error signal, E(s), and 
produces the control signal, U(s), to control the 
output response, C(s), referring to the referent input, 
R(s), and regulate the output response, C(s), from 
the external disturbance signal, D(s). The s-domain 
transfer function of the PIDA controller Gc(s) is 
stated in (15), where Kp, Ki, Kd and Ka are 
proportional, integral, derivative and accelerated 
gains, respectively.  
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In the time-domain response of a controlled 
system, rise time (tr) and maximum percent 
overshoot (Mp) are usually conflict to each other. 
Therefore, two particular objective functions, i.e. 
f1(x) = tr and f2(x) = Mp are then set as stated in (16) 
to be minimized by the LFA in order to obtain the 
optimal PIDA parameters, i.e. Kp, Ki, Kd and Ka,  for 
the AVR system, corresponding to their constraints 
and search spaces as given in (17). 

 
 

4 Results and Discussions 
To design optimal PIDA controllers for the AVR 
system by the LFA based on multiobjective 
optimization context, the LFA algorithms were 
coded by MATLAB version 2017b (License 
No.#40637337) run on Intel(R) Core(TM) i5-3470 
CPU@3.60GHz, 4.0GB-RAM. Search parameters 
of the LFA are set according to Yang’s 
recommendations [16], i.e. the numbers of fireflies n 
= 30, 0 = 0.25, 0 = 1,  = 1.50 and   = 1. The 
maximum generation MaxGen = 100 is then set as 
the termination criteria (TC) in each trial. 50 trials 
are conducted to find a set of the optimal PIDA 
controllers for the AVR system. In this work, the 
parameters of the AVR system are set according to 
[24],[25] as follows: KA = 10, A = 0.1 sec., KE = 1.0, 
E = 0.4 sec., KG = 1.0, G = 1.0 sec., KR = 1.0 and R 
= 0.01 sec.  

After the searching process of the LFA over 50 
trials stopped, 50 optimal PIDA controllers are 
successfully obtained and summarized in Table 1 
with their corresponding responses where ts is 
settling time and Ess is steady-state error. As non-
dominated solutions, 50 sets of obtained PIDA 
controllers are plotted in Fig. 3 to formulate the 
Pareto front and perform trade-off characteristics 
between f1(x) and f2(x). Tracking (or command 
following) responses of the AVR system with PIDA 
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Fig. 2 LFA-based PIDA controller design for AVR system. 
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controllers are depicted in Fig. 4, while regulating 
(or disturbance rejection) responses of the AVR 
system with PIDA controllers are plotted in Fig. 5. 
From obtained results, it was found that the optimal 
PIDA controller’s parameters obtained by the LFA 
for the AVR system and their corresponding 
responses are very satisfactory according to the 
design constraints defined in (17).  
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Fig. 3 Pareto front of AVR system with PIDA 
controllers. 

 

 

Fig. 4 Tracking responses of AVR system with 
PIDA controllers. 

 

 

Fig. 5 Regulating responses of AVR system with 
PIDA controllers. 

 
 

5 Conclusions 
In this paper, the application of Lévy-flight firefly 
algorithm (LFA) to multiobjective PIDA controller 
design optimization for the AVR system has been 
proposed. Two particular objective functions, f1(x) = 
rise time and f2(x) =maximum overshoot, have been 
set to be minimized by searching for the appropriate 
values of the PIDA controllers by the LFA. As 
results, the LFA could provide the optimal PIDA 
controllers according to the predefined objective and 
their constraint functions. 50 sets of optimal PIDA 
controllers as non-dominated solutions have been 
performed the Pareto front between f1(x) and f2(x), 
optimally. Tracking and regulating responses of the 
AVR system have been successfully achieved by the 
PIDA controllers designed by the LFA. 
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Table 1: 50 PIDA controllers obtained by LFA for AVR system and their corresponding responses. 
 

PIDA 
No# 

PIDA controller’s parameters Responses 

Kp Ki Kd Ka 
f1(x) 

tr (sec.) 
f2(x) 

Mp (%) 
ts (sec.) Ess (%) 

1. 
2. 
3. 
4. 
5. 
6. 
7. 
8. 
9. 
10. 
11. 
12. 
13. 
14. 
15. 
16. 
17. 
18. 
19. 
20. 
21. 
22. 
23. 
24. 
25. 
26. 
27. 
28. 
29. 
30. 
31. 
32. 
33. 
34. 
35. 
36. 
37. 
38. 
39. 
40. 
41. 
42. 
43. 
44. 
45. 
46. 
47. 
48. 
49. 
50. 

0.846024 
0.838297 
0.806808 
0.844065 
0.779164 
0.877813 
0.719457 
0.964169 
0.940636 
0.897606 
0.891220 
0.989782 
0.953455 
0.966625 
0.943977 
0.926938 
0.999988 
0.969642 
0.813201 
0.948408 
0.969620 
0.999965 
0.938238 
0.999975 
0.999997 
0.999999 
0.999964 
0.958590 
0.935873 
0.998341 
1.000000 
0.999979 
0.999949 
0.957756 
0.929096 
0.941326 
0.999983 
0.999990 
0.981187 
0.999988 
0.999997 
0.996214 
0.999457 
0.992112 
0.999966 
0.999902 
0.999957 
0.999971 
0.999989 
0.999474 

0.539313 
0.602389 
0.613666 
0.533188 
0.658077 
0.660406 
0.700331 
0.528245 
0.653474 
0.780465 
0.820574 
0.541024 
0.664484 
0.510907 
0.723377 
0.648208 
0.562378 
0.648106 
0.907979 
0.638904 
0.671554 
0.602366 
0.815793 
0.640605 
0.641186 
0.641186 
0.642427 
0.783677 
0.861061 
0.687555 
0.683109 
0.696564 
0.704418 
0.829153 
0.904153 
0.877485 
0.715371 
0.739741 
0.819827 
0.789630 
0.801844 
0.815113 
0.806589 
0.844931 
0.823675 
0.842957 
0.844477 
0.832714 
0.908276 
0.947491 

0.299987 
0.299990 
0.299988 
0.300000 
0.299988 
0.299984 
0.299986 
0.299995 
0.299996 
0.299991 
0.299986 
0.299983 
0.300000 
0.299981 
0.299990 
0.299990 
0.299988 
0.299997 
0.299997 
0.299986 
0.299984 
0.299991 
0.299991 
0.299991 
0.299990 
0.299990 
0.299989 
0.299994 
0.299987 
0.299985 
0.299986 
0.299994 
0.299994 
0.300000 
0.299986 
0.299987 
0.299987 
0.299987 
0.299998 
0.299985 
0.299987 
0.299985 
0.299991 
0.299989 
0.299990 
0.299983 
0.299997 
0.299992 
0.299994 
0.299989 

0.009998 
0.009999 
0.008085 
0.006392 
0.009934 
0.010000 
0.008362 
0.009999 
0.010000 
0.009999 
0.009999 
0.010000 
0.009999 
0.008149 
0.009999 
0.007540 
0.010000 
0.009776 
0.009997 
0.008184 
0.009725 
0.009999 
0.009999 
0.010000 
0.010000 
0.010000 
0.010000 
0.010000 
0.010000 
0.010000 
0.010000 
0.010000 
0.009999 
0.009999 
0.010000 
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